Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
1.
Food Res Int ; 184: 114275, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609252

RESUMO

Trichothecenes are Fusarium mycotoxins with sesquiterpenoid structure, which are widely occurred in grains. Due to high efficiency and environmental friendliness, biological detoxification methods have been of great interest to treat this global food and feed safety concern. This review summarized the biological detoxification methods of trichothecenes from three aspects, biosorption, biotransformation and biotherapy. The detoxification efficiency, characteristics, mechanisms and limitations of different strategies were discussed in detail. Computer-aided design will bring a new research paradigm for more efficient discovery of biodetoxifier. Integrating different detoxification approaches assisted with computational tools will become a promising research direction in the future, which will help to maximize the detoxification effect, or provide precise detoxification programs for the coexistence of various toxins at different levels in actual production. In addition, technical and regulatory issues in practical application were also discussed. These findings contribute to the exploration of efficient, applicable and sustainable methods for trichothecenes detoxification, ensuring the safety of food and feed to reduce the deleterious effects of trichothecenes on humans and animals.


Assuntos
Fusarium , Micotoxinas , Tricotecenos , Animais , Humanos , Alimentos
2.
Food Chem X ; 21: 101199, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38495028

RESUMO

A reliable and sensitive UPLC-MS/MS method coupled with HLB-SPE was developed for simultaneous determination of T-2 and its modified forms (HT-2, NEO, T-2-triol, T-2-tetraol, T-2-3G, and HT-2-3G) in cereals and cereal-based products. Acceptable linearity (R2 ≥ 0.99), limits of quantitation (0.5-10.0 µg/kg), intra-day precision (RSD < 12.8 %), inter-day precision (RSD ≤ 15.8 %), and recovery (76.8 %-115.2 %) were obtained for all analytes in all matrices investigated. 107 commercial foodstuffs were analyzed, and T-2 was detected in 29.0 % of maize and maize flour samples (0.51 to 56.61 µg/kg) and in 10-33.3 % of wheat flour and barley samples (1.27 to 78.51 µg/kg). Moreover, 66.7 % of the positive samples were simultaneously contaminated with two or more T-2 forms. The possible health risk related to T-2 and its modified forms in cereals and cereal-based products was evaluated using a probabilistic dietary exposure assessment. The 95th percentile dietary exposure values of the sum of T-2 forms ranged from 0.16 to 1.70 ng/kg b.w./day for lower bound (LB), and 0.17 to 7.59 ng/kg b.w./day for upper bound (UB). Results strongly suggested that the presence of T-2 and its modified forms in cereals and cereal-based products warrants greater attention and investigation, although probabilistic dietary exposure values currently remain below the tolerable daily intake (TDI) value of 20 ng/kg b.w./day.

3.
Toxins (Basel) ; 16(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38535797

RESUMO

RNA viruses of the genera Ambivirus, Mitovirus, Sclerotimonavirus, and Partitivirus were found in a single isolate of Fusarium graminearum. The genomes of the mitovirus, sclerotimonavirus, and partitivirus were assigned to previously described viruses, whereas the ambivirus genome putatively represents a new species, named Fusarium graminearum ambivirus 1 (FgAV1). To investigate the effect of mycoviruses on the fungal phenotype, the spontaneous loss of mycoviruses during meiosis and the transmission of mycoviruses into a new strain via anastomosis were used to obtain isogenic F. graminearum strains both with and without mycoviruses. Notable effects observed in mycovirus-harboring strains were (i) the suppression of the synthesis of trichothecene mycotoxins and their precursor trichodiene, (ii) the suppression of the synthesis of the defense compound aurofusarin, (iii) the stimulation of the emission of 2-methyl-1-butanol and 3-methyl-1-butanol, and (iv) the increased attractiveness of fungal mycelia for fungivorous collembolans. The increased attractiveness of mycovirus-infected filamentous fungi to animal predators opens new perspectives on the ecological implications of the infection of fungi with viruses.


Assuntos
Micovírus , Fusarium , Micotoxinas , Tricotecenos , Animais
4.
Int J Food Microbiol ; 416: 110658, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38484608

RESUMO

Fusarium asiaticum is a predominant fungal pathogen causing Fusarium Head Blight (FHB) in wheat and barley in China and is associated with approximately £201 million in annual losses due to grains contaminated with mycotoxins. F. asiaticum produces deoxynivalenol and zearalenone whose maximum limits in cereals and cereals-derived products have been established in different countries including the EU. Few studies are available on the ecophysiological behaviour of this fungal pathogen, but nothing is known about the impact of projected climate change scenarios on its growth and mycotoxin production. Therefore, this study aimed to examine the interacting effect of i) current and increased temperature (25 vs 30 °C), ii) drought stress variation (0.98 vs 0.95 water activity; aw) and iii) existing and predicted CO2 concentrations (400 vs 1000 ppm) on fungal growth and mycotoxin production (type B trichothecenes and zearalenone) by three F. asiaticum strains (CH024b, 82, 0982) on a wheat-based matrix after 10 days of incubation. The results showed that, when exposed to increased CO2 concentration (1000 ppm) there was a significant reduction of fungal growth compared to current concentration (400 ppm) both at 25 and 30 °C, especially at 0.95 aw. The multi-mycotoxin analysis performed by LC-MS/MS qTRAP showed a significant increase of deoxynivalenol and 15-acetyldeoxynivalenol production when the CH024b strain was exposed to elevated CO2 compared to current CO2 levels. Zearalenone production by the strain 0982 was significantly stimulated by mild water stress (0.95 aw) and increased CO2 concentration (1000 ppm) regardless of the temperature. Such results highlight that intraspecies variability exist among F. asiaticum strains with some mycotoxins likely to exceed current EU legislative limits under prospected climate change conditions.


Assuntos
Fusarium , Micotoxinas , Tricotecenos , Zearalenona , Micotoxinas/análise , Zearalenona/análise , Triticum/microbiologia , Dióxido de Carbono/farmacologia , Cromatografia Líquida , Mudança Climática , Espectrometria de Massas em Tandem , Grão Comestível/microbiologia
5.
Front Microbiol ; 15: 1363204, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38463484

RESUMO

Fusarium culmorum is a major wheat pathogen, and its secondary metabolites (mycotoxins) cause damage to plants, animals, and human health. In the era of sustainable agriculture, eco-friendly methods of prevention and control are constantly needed. The use of plant extracts as biocontrol agents has gained popularity as they are a source of active substances that play a crucial role in fighting against phytopathogens. This study evaluated the impact of Lamium album on wheat seed germination and seedling growth. In a pot experiment, the effect of L. album on wheat seedlings artificially inoculated with F. culmorum was evaluated by measuring seedling growth parameters, and by using chromatographic methods, ergosterol and mycotoxins levels were analyzed. The results showed that the phytotoxic effect of L. album flower extracts on wheat seed germination and seedling growth was concentration dependent. The radicle length was also reduced compared to the control; however, L. album did not significantly affect the dry weight of the radicle. A slight phytotoxic effect on seed germination was observed, but antifungal effects on artificially infected wheat seedlings were also confirmed with the reduction of ergosterol level and mycotoxins accumulation in the roots and leaves after 21 days of inoculation. F. culmorum DNA was identified in the control samples only. Overall, this study is a successful in planta study showing L. album flower extract protection of wheat against the pathogen responsible for Fusarium crown and root rot. Further research is essential to study the effects of L. album extracts on key regulatory genes for mycotoxin biosynthetic pathways.

6.
J Agric Food Chem ; 72(8): 3949-3957, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38375818

RESUMO

Fusarium poae is commonly detected in field surveys of Fusarium head blight (FHB) of cereal crops and can produce a range of trichothecene mycotoxins. Although experimentally validated reports of F. poae strains producing T-2/HT-2 trichothecenes are rare, F. poae is frequently generalized in the literature as a producer of T-2/HT-2 toxins due to a single study from 2004 in which T-2/HT-2 toxins were detected at low levels from six out of forty-nine F. poae strains examined. To validate/substantiate the observations reported from the 2004 study, the producing strains were acquired and phylogenetically confirmed to be correctly assigned as F. poae; however, no evidence of T-2/HT-2 toxin production was observed from axenic cultures. Moreover, no evidence for a TRI16 ortholog, encoding a key acyltransferase shown to be necessary for T-2 toxin production in other Fusarium species, was observed in any of the de novo assembled genomes of the F. poae strains. Our findings corroborate multiple field-based and in vitro studies on FHB-associated Fusarium populations which also do not support the production of T-2/HT-2 toxins with F. poae and therefore conclude that F. poae should not be generalized as a T-2/HT-2 toxin producing species of Fusarium.


Assuntos
Fusarium , Micotoxinas , Toxina T-2/análogos & derivados , Fusarium/genética , Micotoxinas/análise , Grão Comestível/química
7.
Food Chem ; 439: 138057, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38100874

RESUMO

Trichothecene (TCN) contamination in food and feed is a serious challenge due to the negative health and economic impacts. Here, we confirmed that the glutathione S-transferase (GST) Fhb7-GST could broadly catalyze type A, type B and type D TCNs into glutathione epoxide adducts (TCN-13-GSHs). To evaluate the toxicity of TCN-13-GSH adducts, we performed cell proliferation assays in vitro, which demonstrated decreased cytotoxicity of the adducts. Moreover, in vivo assays (repeated-dose treatment in mice) confirmed that TCN-13-GSH adducts were dramatically less toxic than the corresponding TCNs. To establish whether TCN-13-GSH was metabolized back to free toxin during digestion, single-dose metabolic tests were performed in rats; DON-13-GSH was not hydrolyzed in vivo, but rather was quickly metabolized to another low-toxicity compound, DON-13-N-acetylcysteine. These results demonstrate the promise of Fhb7-GST as a candidate of detoxification enzyme potentially applied in TCN-contaminated agricultural samples, minimizing the detrimental effects of the mycotoxin.


Assuntos
Glutationa Transferase , Tricotecenos , Ratos , Camundongos , Animais , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Tricotecenos/toxicidade , Tricotecenos/metabolismo , Glutationa/metabolismo , Catálise
8.
Artigo em Inglês | MEDLINE | ID: mdl-38061965

RESUMO

The main mycotoxins involved in adverse equine health issues are aflatoxins, fumonisins, trichothecenes, and probably ergovaline (fescue grass endophyte toxicosis). Most exposures are through contaminated grains and grain byproducts, although grasses and hays can contain mycotoxins. Clinical signs are often nonspecific and include feed refusal, colic, diarrhea, and liver damage but can be dramatic with neurologic signs associated with equine leukoencephalomalacia and tremorgens. Specific antidotes for mycotoxicosis are rare, and treatment involves stopping the use of contaminated feed, switching to a "clean" feed source, and providing supportive care.

9.
Toxins (Basel) ; 15(12)2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38133196

RESUMO

NX toxins have been described as a novel group of type A trichothecenes produced by members of the Fusarium graminearum species complex (FGSC). Differences in structure between NX toxins and the common type B trichothecenes arise from functional variation in the trichothecene biosynthetic enzyme Tri1 in the FGSC. The identified highly conserved changes in the Tri1 gene can be used to develop specific PCR-based assays to identify the NX-producing strains. In this study, the sequences of the Tri1 gene from type B trichothecene- and NX-producing strains were analyzed to identify DNA polymorphisms between the two different kinds of trichothecene producers. Four sets of Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) methods were successfully developed to distinguish the common type B trichothecene producers and NX producers within FGSC. These promising diagnostic methods can be used for high-throughput genotype detection of Fusarium strains as a step forward for crop disease management and mycotoxin control in agriculture. Additionally, it was found that the Tri1 gene phylogeny differs from the species phylogeny, which is consistent with the previous studies.


Assuntos
Fusarium , Tricotecenos , Polimorfismo de Fragmento de Restrição , Filogenia , Fusarium/genética , Tricotecenos/análise , Reação em Cadeia da Polimerase , Genótipo
10.
Food Res Int ; 173(Pt 1): 113284, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803597

RESUMO

The bitter taste perception evolved in human and animals to rapidly perceive and avoid potential toxic compounds. This is mediated by taste receptors type 2 (TAS2R), expressed in various tissues, which recently proved to be involved in roles beyond the bitter perception itself. With this study, the interaction between food-related toxic compounds and TAS2R46 has been investigated via computational approaches, starting with a virtual screening and moving to molecular docking and dynamics simulations. The virtual screening analysis identified trichothecolone and the trichothecenes class it belongs to, which includes mycotoxins widespread in several commodities raising food safety concerns, as possible TAS2R46 binders. Molecular docking and dynamics simulations were performed to further explore the trichotecenes-TAS2R46 interaction. The results indicated that deoxynivalenol and its 15-acetylated derivative could activate TAS2R46. Eventually, this study provided initial evidence supporting the involvement of TAS2R46 in the underpinning mechanisms of deoxynivalenol action highlighting the need of digging into the involvement of TAS2R46 and TAS2Rs in the adverse effects of deoxynivalenol and congeners.


Assuntos
Paladar , Tricotecenos , Animais , Humanos , Receptores Acoplados a Proteínas G , Simulação de Acoplamento Molecular , Tricotecenos/toxicidade
11.
Toxins (Basel) ; 15(7)2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37505712

RESUMO

Wheat represents one of the most widely consumed cereals worldwide. Cultivated in winter and spring, it is vulnerable to an array of different pathogens, including fungi, which are managed largely through the in-field application of fungicides. During this study, a 4-year field investigation (2018-2021) was performed in France, aiming to assess the efficacy of fungicide treatment to reduce mycotoxin contamination in common and durum wheat. Several different commercially available fungicides were applied via sprayers. Concentrations of mycotoxins and fungal metabolites in wheat were determined using a multi-analyte liquid-chromatography-tandem-mass-spectrometry-based method. The highest contamination levels and strongest effects of fungicides were observed in 2018, followed by 2021. A significant fungicide-mediated reduction was observed for the trichothecenes deoxynivalenol, deoxynivalenol-3-glucoside, nivalenol, and nivalenol-3-glucoside. Furthermore, fungicide treatment also reduced levels of culmorin and its hydroxy metabolites 5- and 15-hydroxy-culmorin, as well as aurofusarin. Interestingly, the Alternaria metabolite infectopyron was increased following fungicide treatment. In conclusion, fungicide treatment was effective in reducing mycotoxin levels in wheat. However, as complete prevention of mycotoxin contamination was not achieved, fungicide treatment should always be combined with other pre- and post-harvest mycotoxin mitigation strategies to improve food and feed safety.


Assuntos
Fungicidas Industriais , Fusarium , Micotoxinas , Micotoxinas/análise , Triticum/microbiologia , Fungicidas Industriais/farmacologia , Contaminação de Alimentos/prevenção & controle , Contaminação de Alimentos/análise , Grão Comestível/química , Fusarium/metabolismo
12.
Toxins (Basel) ; 15(7)2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37505715

RESUMO

Trichothecenes are the most common Fusarium toxins detected in grains and related products. Type A trichothecenes are among the mycotoxins of greatest concern to food and feed safety due to their high toxicity. Recently, two different trichothecene genotypes within Fusarium species were reported. The available information showed that Tri1 and Tri16 genes are the key determinants of the trichothecene profiles of T-2 and DAS genotypes. In this review, polymorphisms in the Tri1 and Tri16 genes in the two genotypes were investigated. Meanwhile, the functions of genes involved in DAS and NEO biosynthesis are discussed. The possible biosynthetic pathways of DAS and NEO are proposed in this review, which will facilitate the understanding of the synthesis process of trichothecenes in Fusarium strains and may also inspire researchers to design and conduct further research. Together, the review provides insight into trichothecene profile differentiation and Tri gene evolutionary processes responsible for the structural diversification of trichothecene produced by Fusarium.


Assuntos
Fusarium , Tricotecenos do Tipo A , Tricotecenos do Tipo A/metabolismo , Vias Biossintéticas , Fusarium/classificação , Fusarium/genética , Fusarium/metabolismo , Micotoxinas/genética , Micotoxinas/metabolismo , Proteínas Fúngicas/genética , Evolução Biológica
13.
Toxins (Basel) ; 15(7)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37505735

RESUMO

In view of the frequent occurrences of mycotoxins in cereals, this study assessed the presence of trichothecenes in 121 samples from Romanian markets. These samples were divided into five groups based on product type: (1) bread and bakery products containing white flour, (2) half-brown bread with whole wheat flour, (3) brown bread containing rye flour, (4) pasta, and (5) raw wheat. Gas Chromatography-Mass Spectrometry was used to detect 13 different mycotoxins, which included the Type A compounds HT-2 toxin and T-2 toxin, as well as the Type B compounds deoxynivalenol and nivalenol. Results indicated trichothecene contamination in 90.08% of our samples, with deoxynivalenol predominating by at least 78% in each examined group. Co-occurrence of three or four trichothecenes were found in 23.85% of our samples. Our study underscores the necessity of consistent monitoring of staple foods to prevent the intake of harmful trichothecenes by consumers.


Assuntos
Micotoxinas , Tricotecenos , Grão Comestível/química , Farinha/análise , Romênia , Triticum/química , Tricotecenos/análise , Micotoxinas/análise , Contaminação de Alimentos/análise
14.
Appl Environ Microbiol ; 89(7): e0016323, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37338364

RESUMO

Stachybotrys chartarum (Hypocreales, Ascomycota) is a toxigenic fungus that is frequently isolated from water-damaged buildings or improperly stored feed. The secondary metabolites formed by this mold have been associated with health problems in humans and animals. Several authors have studied the influence of environmental conditions on the production of mycotoxins, but these studies focused on undefined or complex substrates, such as building materials and media that impeded investigations of the influence of specific nutrients. In this study, a chemically defined cultivation medium was used to investigate the impact of several nitrogen and carbon sources on growth of S. chartarum and its production of macrocyclic trichothecenes (MTs) and stachybotrylactam (STLAC). Increasing concentrations of sodium nitrate were found to positively affect mycelial growth, the level of sporulation, and MT production, while ammonium nitrate and ammonium chloride had an inhibitory effect. Potato starch was the superior and most reliable carbon source tested. Additionally, we observed that the level of sporulation was correlated with the production of MTs but not with that of STLAC. In this study, we provide a chemically well-defined cultivation medium suitable for standardized in vitro testing of the capacity of S. chartarum isolates to produce macrocyclic trichothecenes. IMPORTANCE Macrocyclic trichothecenes (MTs) are highly toxic secondary metabolites that are produced by certain Stachybotrys chartarum strains, which consequently pose a risk for animals and humans. To identify hazardous, toxin-producing strains by analytical means, it is important to grow them under conditions that support MT production. Nutrients determine growth and development and thus the synthesis of secondary metabolites. Complex rich media are commonly used for diagnostics, but batch differences of supplements pose a risk for inconsistent data. We have established a chemically defined medium for S. chartarum and used it to analyze the impact of nitrogen and carbon sources. A key finding is that nitrate stimulates MT production, whereas ammonium suppresses it. Defining nutrients that support MT production will enable a more reliable identification of hazardous S. chartarum isolates. The new medium will also be instrumental in analyzing the biosynthetic pathways and regulatory mechanisms that control mycotoxin production in S. chartarum.


Assuntos
Micotoxinas , Stachybotrys , Tricotecenos , Animais , Humanos , Micotoxinas/toxicidade , Tricotecenos/metabolismo , Stachybotrys/metabolismo
15.
Toxins (Basel) ; 15(4)2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-37104186

RESUMO

Small grain cereals are frequently infected with mycotoxigenic Fusarium fungi. Oats have a particularly high risk of contamination with type A trichothecene mycotoxins; their glucoside conjugates have also been reported. Agronomy practices, cereal variety and weather conditions have been suggested to play a role in Fusarium infection in oats. The current study investigates concentrations of free and conjugated Fusarium mycotoxins in organic and conventional oats grown in Scotland. In 2019, 33 milling oat samples (12 organic, 21 conventional) were collected from farmers across Scotland, together with sample questionnaires. Samples were analysed for 12 mycotoxins (type A trichothecenes T-2-toxin, HT-2-toxin, diacetoxyscirpenol; type B trichothecenes deoxynivalenol, nivalenol; zearalenone and their respective glucosides) using LC-MS/MS. The prevalence of type A trichothecenes T-2/HT-2 was very high (100% of conventional oats, 83% of organic oats), whereas type B trichothecenes were less prevalent, and zearalenone was rarely found. T-2-glucoside and deoxynivalenol-glucoside were the most prevalent conjugated mycotoxins (36 and 33%), and co-occurrence between type A and B trichothecenes were frequently observed (66% of samples). Organic oats were contaminated at significantly lower average concentrations than conventional oats, whereas the effect of weather parameters were not statistically significant. Our results clearly indicate that free and conjugated T-2- and HT-2-toxins pose a major risk to Scottish oat production and that organic production and crop rotation offer potential mitigation strategies.


Assuntos
Fusarium , Micotoxinas , Toxina T-2 , Tricotecenos do Tipo B , Zearalenona , Micotoxinas/análise , Avena/microbiologia , Grão Comestível/química , Zearalenona/análise , Cromatografia Líquida , Contaminação de Alimentos/análise , Espectrometria de Massas em Tandem , Toxina T-2/análise , Escócia , Glucosídeos
16.
Int J Food Microbiol ; 394: 110176, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-36989929

RESUMO

Oats are highly susceptible to infection by Fusarium species, especially F. langsethiae, F. poae and F. sporotrichioides which contaminate the grain with mycotoxins. Climate change is expected to affect fungal colonisation and associated mycotoxin production. The objective of this study was to examine the effect of acclimatisation to elevated CO2 on the growth and mycotoxin production capacity of these fungal species. Strains of F. langsethiae (FL; seven strains), F. poae (FP; two strains) and F. sporotrichioides (FS; one strain) were acclimatised by sub-culturing for 10 generations at either 400 or 1000 ppm CO2 under diurnal temperature conditions. At each sub-culturing, the effect of acclimatisation to elevated CO2 on (a) lag phase prior to growth, (b) growth rate on oat-based media was assessed. Additionally, the production of type A trichothecenes and related toxic secondary metabolites of sub-cultures after 1, 7 and 10 generations were assessed using LC-MS/MS qTRAP. The results showed that Fusarium strains had an increased lag time and growth rate in response to the combined effect of sub-culturing and elevated CO2 levels. T-2 + HT-2 production was affected by elevated CO2 in strain FL4 (7.1-fold increase) and a decrease in strain FL1 (2.0-fold decrease) at the first sub-culturing and FS (1.3-fold decrease) after 7 sub-cultures compared to ambient conditions. The effect of sub-culturing on T-2 + HT-2 production varied depending on the fungal strain. For strain FL4, significantly less T-2 + HT-2 toxins were produced after 10 generations (4.4-fold decrease) as compared to that under elevated CO2 conditions after one sub-culture, and no change was observed under ambient conditions. The FS strain showed significant stimulation of T-2 + HT-2 toxin production after 10 sub-cultured generations (1.1-fold increase) compared to the initial sub-culture of this strain under elevated CO2 conditions. The production of other toxic secondary metabolites was generally not impacted by elevated CO2 conditions or by sub-culture for 10 generations, with the exceptions of FL1 and FP1. FL1 produced significantly more neosolaniol after 10 generations, when compared to those after 1 and 7, regardless of the CO2 conditions. For FP1, elevated CO2 significantly triggered beauvericin production after an initial sub-culture when compared to ambient conditions at the same sub-culture stage (29-fold). FP1 acclimatisation to elevated CO2 led to a decrease of beauvericin production after 10 generations when compared to 1 (6-fold). In contrast, sub-culturing for 10 generations compared to 1 under ambient CO2 conditions resulted in an increase in this toxin (12-fold).


Assuntos
Fusarium , Micotoxinas , Toxina T-2 , Micotoxinas/análise , Avena/microbiologia , Fusarium/metabolismo , Dióxido de Carbono/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Toxina T-2/análise , Grão Comestível/microbiologia
17.
Foods ; 12(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36900564

RESUMO

Crop contamination with mycotoxins is a global problem with a negative impact on human and animal health as well as causing economical losses in food and feed chains. This study was focused on the evaluation of the effect of lactic acid bacteria (LAB) strain (Levilactobacillus brevis-LUHS173, Liquorilactobacillus uvarum-LUHS245, Lactiplantibacillus plantarum-LUHS135, Lacticaseibacillus paracasei-LUHS244 and Lacticaseibacillus casei-LUHS210) fermentation on the changes in the level of deoxynivalenol (DON) and its conjugates in Fusarium spp.-contaminated barley wholemeal (BWP). Samples, with different contamination of DON and its conjugates, were treated separately (for 48 h). In addition to mycotoxin content, enzymatic activities (amylolytic, xylanolytic, and proteolytic) of BWP (before and after fermentation) were evaluated. It was established that the effect of decontamination depends on the LAB strain used, and a significant reduction in DON and the concentration of its conjugates in Lc. casei fermented samples was achieved: the amount of DON decreased on average by 47%, and the amount of D3G, 15-ADON and 3-ADON decreased by 82.4, 46.1, and 55.0%, respectively. Lc. casei also showed viability in the contaminated fermentation medium and an effective production of organic acids was obtained. Additionally, it was found that enzymes are involved to the detoxification mechanism of DON and its conjugates in BWP. These findings indicate that fermentation with selected LAB strains could be applied for contaminated barley treatment in order to significantly reduce Fusarium spp. mycotoxin levels in BWP and improve the sustainability of grain production.

18.
Mycotoxin Res ; 39(2): 95-108, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36853556

RESUMO

An inter-laboratory study was performed in eight laboratories to evaluate the simultaneous quantification method for HT-2 toxin (HT-2), T-2 toxin (T-2), diacetoxyscirpenol (DAS), neosolaniol (NES), 3-acetyldeoxynivalenol (3-AcDON), 15-acetyldeoxynivalenol (15-AcDON), deoxynivalenol (DON), deoxynivalenol-3-glucoside (D3G), nivalenol (NIV), and fusarenon-X (FUS-X) in feed. The mycotoxins in the samples were extracted with hydrous acetonitrile, purified using a multifunctional column (InertSep® VRA-3) and a phospholipid removal column (Hybrid SPE®-Phospholipid), and then quantified using liquid chromatography-tandem mass spectrometry (LC-MS/MS) with atmospheric pressure chemical ionisation mode. The mean recovery, repeatability, reproducibility, and Horwitz ratio from the inter-laboratory validation study were 99.8-109%, 3.1-9.8%, 4.3-9.8%, and 0.19-0.45, respectively, for type A trichothecenes (HT-2, T-2, DAS, and NES). Those values for type B trichothecenes (3-AcDON, 15-AcDON, DON, NIV, and FUS-X) were 89.9-116%, 3.4-9.1%, 5.6-14%, and 0.25-0.70, and the values for modified mycotoxin (D3G) were 78.2-96.7%, 3.5-6.4%, and 13-22%, respectively.


Assuntos
Micotoxinas , Tricotecenos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Reprodutibilidade dos Testes , Tricotecenos/análise , Micotoxinas/análise
19.
Toxins (Basel) ; 15(2)2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36828399

RESUMO

Type B trichothecenes (deoxynivalenol, nivalenol, 3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol) and deoxynivalenol-3-glucoside (DON-3G) are secondary toxic metabolites produced mainly by mycotoxigenic Fusarium fungi and have been recognized as natural contaminants in cereals and cereal-based foods. The latest studies have proven the various negative effects of type B trichothecenes on human health. Due to the widespread occurrence of Fusarium species, contamination by these mycotoxins has become an important aspect for public health and agro-food systems worldwide. Hence, their monitoring and surveillance in various foods have received a significant deal of attention in recent years. In this review, an up-to-date overview of the occurrence profile of major type B trichothecenes and DON-3G in cereal grains and their toxicological implications are outlined. Furthermore, current trends in analytical methodologies for their determination are overviewed. This review also covers the factors affecting the production of these mycotoxins, as well as the management strategies currently employed to mitigate their contamination in foods. Information presented in this review provides good insight into the progress that has been achieved in the last years for monitoring type B trichothecenes and DON-3G, and also would help the researchers in their further investigations on metabolic pathway analysis and toxicological studies of these Fusarium mycotoxins.


Assuntos
Fusarium , Micotoxinas , Tricotecenos do Tipo B , Humanos , Grão Comestível/química , Descontaminação , Contaminação de Alimentos/análise , Micotoxinas/análise , Fusarium/metabolismo
20.
J Vet Intern Med ; 37(1): 126-132, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36609843

RESUMO

BACKGROUND: After a strong epidemiological link to diet was established in an outbreak of pancytopenia in cats in spring 2021 in the United Kingdom, 3 dry diets were recalled. Concentrations of the hemato- and myelotoxic mycotoxins T-2, HT-2 and diacetoxyscirpenol (DAS) greater than the European Commission guidance for dry cat foods were detected in the recalled diets. OBJECTIVES: To describe clinical and clinicopathological findings in cats diagnosed with suspected diet induced pancytopenia. ANIMALS: Fifty cats presenting with pancytopenia after exposure to a recalled diet. METHODS: Multicenter retrospective case series study. Cats with known exposure to 1 of the recalled diets were included if presented with bi- or pancytopenia and underwent bone marrow examination. RESULTS: Case fatality rate was 78%. Bone marrow aspirates and biopsy examination results were available in 23 cats; 19 cats had a bone marrow aspirate, and 8 cats had a biopsy core, available for examination. Bone marrow hypo to aplasia-often affecting all cell lines-was the main feature in all 31 available core specimens. A disproportionately pronounced effect on myeloid and megakaryocytic cells was observed in 19 cats. Myelofibrosis or bone marrow necrosis was not a feature. CONCLUSION AND CLINICAL IMPORTANCE: Mycotoxin induced pancytopenia should be considered as differential diagnosis in otherwise healthy cats presenting with bi- or pancytopenia and bone marrow hypo- to aplasia.


Assuntos
Doenças do Gato , Pancitopenia , Gatos , Animais , Pancitopenia/induzido quimicamente , Pancitopenia/veterinária , Estudos Retrospectivos , Medula Óssea/patologia , Biópsia/veterinária , Dieta , Doenças do Gato/induzido quimicamente , Doenças do Gato/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...